An Evolutionary Approach for the Enhancement of Dermatological Images and Their Classification Using Deep Learning Models

Author:

Chaahat 12ORCID,Kumar Gondhi Naveen1ORCID,Kumar Lehana Parveen3ORCID

Affiliation:

1. Department of Computer Science and Engineering, Shri Mata Vaishno Devi University, Katra 182301, India

2. MIET, Jammu 181122, India

3. Department of Electronics, University of Jammu, Jammu 180006, India

Abstract

Dermatological problems are the most widely spread skin diseases amongst human beings. They can be infectious, chronic, and sometimes may also lead to serious health problems such as skin cancer. Generally, rural area clinics lack trained dermatologists and mostly rely on the analysis of remotely accessible experts through mobile-based networks for sharing the images and other related information. Under such circumstances, poor image quality introduced due to the capturing device results in misleading diagnosis. Here, a genetic-algorithm- (GA-) based approach used as an image enhancement technique has been explored to improve the low quality of the dermatological images received from the rural clinic. The diagnosis is performed on the enhanced images using convolutional neural network (CNN) classifier for the identification of the diseases. The scope of this paper is limited to only motion blurred images, which is the most prevalent problem in capturing of the images, specifically when any of the two (device or the object) may move unpredictably. Seven types of skin diseases, namely, melanoma, melanocytic nevus, basal cell carcinoma, actinic keratosis, benign keratosis, vascular lesion, and squamous cell carcinoma, have been investigated using ResNet-152 giving an overall accuracy of 87.40% for the blurred images. Use of GA-enhanced images increased the accuracy to 95.85%. The results were further analyzed using a confusion matrix and t-test-based statistical investigations. The advantage of the proposed technique is that it reduces the analysis time and errors due to manual diagnosis. Furthermore, speedy and reliable diagnosis at the earliest stage reduces the risk of developing more severe skin problems.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3