D2LFS2Net: Multi‐class skin lesion diagnosis using deep learning and variance‐controlled Marine Predator optimisation: An application for precision medicine

Author:

Dillshad Veena1,Khan Muhammad Attique12ORCID,Nazir Muhammad1,Saidani Oumaima3ORCID,Alturki Nazik3,Kadry Seifedine4ORCID

Affiliation:

1. Department of Computer Science HITEC University Taxila Pakistan

2. Department of Computer Science and Mathematics Lebanese American University Beirut Lebanon

3. Department of Information Systems, College of Computer and Information Sciences Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia

4. Department of Electrical and Computer Engineering Lebanese American University Byblos Lebanon

Abstract

AbstractIn computer vision applications like surveillance and remote sensing, to mention a few, deep learning has had considerable success. Medical imaging still faces a number of difficulties, including intra‐class similarity, a scarcity of training data, and poor contrast skin lesions, notably in the case of skin cancer. An optimisation‐aided deep learning‐based system is proposed for accurate multi‐class skin lesion identification. The sequential procedures of the proposed system start with preprocessing and end with categorisation. The preprocessing step is where a hybrid contrast enhancement technique is initially proposed for lesion identification with healthy regions. Instead of flipping and rotating data, the outputs from the middle phases of the hybrid enhanced technique are employed for data augmentation in the next step. Next, two pre‐trained deep learning models, MobileNetV2 and NasNet Mobile, are trained using deep transfer learning on the upgraded enriched dataset. Later, a dual‐threshold serial approach is employed to obtain and combine the features of both models. The next step was the variance‐controlled Marine Predator methodology, which the authors proposed as a superior optimisation method. The top features from the fused feature vector are classified using machine learning classifiers. The experimental strategy provided enhanced accuracy of 94.4% using the publicly available dataset HAM10000. Additionally, the proposed framework is evaluated compared to current approaches, with remarkable results.

Publisher

Institution of Engineering and Technology (IET)

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3