A New Method of Blind Source Separation Using Single-Channel ICA Based on Higher-Order Statistics

Author:

Lu Guangkuo1,Xiao Manlin2,Wei Ping1,Zhang Huaguo1

Affiliation:

1. Department of Information Engineering, University of Electronic Science and Technology of China, Chengdu, China

2. College of Urban Railway Transportation, Shanghai University of Engineering and Science, Shanghai, China

Abstract

Methods of utilizing independent component analysis (ICA) give little guidance about practical considerations for separating single-channel real-world data, in which most of them are nonlinear, nonstationary, and even chaotic in many fields. To solve this problem, a three-step method is provided in this paper. In the first step, the measured signal which is assumed to be piecewise higher order stationary time series is introduced and divided into a series of higher order stationary segments by applying a modified segmentation algorithm. Then the state space is reconstructed and the single-channel signal is transformed into a pseudo multiple input multiple output (MIMO) mode using a method of nonlinear analysis based on the high order statistics (HOS). In the last step, ICA is performed on the pseudo MIMO data to decompose the single channel recording into its underlying independent components (ICs) and the interested ICs are then extracted. Finally, the effectiveness and excellence of the higher order single-channel ICA (SCICA) method are validated with measured data throughout experiments. Also, the proposed method in this paper is proved to be more robust under different SNR and/or embedding dimension via explicit formulae and simulations.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3