An epoch based methodology to denoise magnetocardiogram (MCG) signals and its application to measurements on subjects with implanted devices

Author:

Sengottuvel SORCID,Devi S Shenbaga,Sasikala M,Satheesh Santhosh,Selvaraj Raja J

Abstract

Abstract Magnetocardiograms (MCG) provide clinically useful diagnostic information in a variety of cardiac dysfunctions. Low frequency baseline drifts and high frequency noise are inevitably present in routine MCG even for those measured inside magnetically shielded rooms. These interferences sometimes exceed subtle cardiac features in MCG recorded on subjects with implanted devices like cardiac pacemakers; this makes interpretation of cardiac magnetic fields difficult. The present study proposes a correlation-based beat-by-beat approach and principal component analysis to eliminate drifts and high frequency noise respectively; the approach is suitable for denoising both single and multi-channel MCG data. The methodology is critically evaluated on simulated noisy measurements using a 37 channel MCG system, when objects such as implantable permanent pacemaker and stainless-steel wire are sequentially kept externally on the chests of five healthy subjects. By characterizing the noise introduced by each of these objects, the deterioration in the quality of MCG and its subsequent restoration by using the proposed method is assessed. The performance of the proposed method is also compared with other conventional denoising techniques namely, bandpass filters, wavelets and ensemble empirical mode decomposition. The proposed method not only exhibits least distortion, but also preserves the beat-by-beat dynamics of cardiac time series. The method has also been illustrated on actual MCG measurements on two subjects with implanted pacemaker which highlight the ability of the proposed method for denoising MCG in general and during extremely noisy measurement situations.

Publisher

IOP Publishing

Subject

General Nursing

Reference44 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3