Affiliation:
1. Department of Emergency Medicine, First People’s Hospital of Lianyungang, Hospital of the Clinical Medical School of Nanjing Medical University, Lianyungang 222002, China
2. Department of Intensive Care Unit, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
Abstract
Neonatal sepsis is one of the most prevalent causes of death of the neonates. However, the mechanisms underlying neonatal sepsis remained unclear. The present study identified a total of 1128 upregulated mRNAs and 1008 downregulated mRNAs, 28 upregulated lncRNAs, and 61 downregulated lncRNAs in neonatal sepsis. Then, we constructed PPI networks to identify key regulators in neonatal sepsis, including ITGAM, ITGAX, TLR4, ITGB2, SRC, ELANE, RPLP0, RPS28, RPL26, and RPL27. lncRNA coexpression analysis showed HS.294603, LOC391811, C12ORF47, LOC729021, HS.546375, HNRPA1L-2, LOC158345, and HS.495041 played important roles in the progression of neonatal sepsis. Bioinformatics analysis showed DEGs were involved in the regulation cellular extravasation, acute inflammatory response, macrophage activation of NF-kappa B signaling pathway, TNF signaling pathway, HIF-1 signaling pathway, Toll-like receptor signaling pathway, and ribosome, RNA transport, and spliceosome. lncRNAs were involved in regulating ribosome, T cell receptor signaling pathway, RNA degradation, insulin resistance, ribosome biogenesis in eukaryotes, and hematopoietic cell lineage. We thought this study provided useful information for identifying novel therapeutic markers for neonatal sepsis.
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine