Use of machine learning-based integration to develop a monocyte differentiation-related signature for improving prognosis in patients with sepsis

Author:

Ning Jingyuan,Sun Keran,Wang Xuan,Fan Xiaoqing,Jia Keqi,Cui Jinlei,Ma CuiqingORCID

Abstract

Abstract Background Although significant advances have been made in intensive care medicine and antibacterial treatment, sepsis is still a common disease with high mortality. The condition of sepsis patients changes rapidly, and each hour of delay in the administration of appropriate antibiotic treatment can lead to a 4–7% increase in fatality. Therefore, early diagnosis and intervention may help improve the prognosis of patients with sepsis. Methods We obtained single-cell sequencing data from 12 patients. This included 14,622 cells from four patients with bacterial infectious sepsis and eight patients with sepsis admitted to the ICU for other various reasons. Monocyte differentiation trajectories were analyzed using the “monocle” software, and differentiation-related genes were identified. Based on the expression of differentiation-related genes, 99 machine-learning combinations of prognostic signatures were obtained, and risk scores were calculated for all patients. The “scissor” software was used to associate high-risk and low-risk patients with individual cells. The “cellchat” software was used to demonstrate the regulatory relationships between high-risk and low-risk cells in a cellular communication network. The diagnostic value and prognostic predictive value of Enah/Vasp-like (EVL) were determined. Clinical validation of the results was performed with 40 samples. The “CBNplot” software based on Bayesian network inference was used to construct EVL regulatory networks. Results We systematically analyzed three cell states during monocyte differentiation. The differential analysis identified 166 monocyte differentiation-related genes. Among the 99 machine-learning combinations of prognostic signatures constructed, the Lasso + CoxBoost signature with 17 genes showed the best prognostic prediction performance. The highest percentage of high-risk cells was found in state one. Cell communication analysis demonstrated regulatory networks between high-risk and low-risk cell subpopulations and other immune cells. We then determined the diagnostic and prognostic value of EVL stabilization in multiple external datasets. Experiments with clinical samples demonstrated the accuracy of this analysis. Finally, Bayesian network inference revealed potential network mechanisms of EVL regulation. Conclusions Monocyte differentiation-related prognostic signatures based on the Lasso + CoxBoost combination were able to accurately predict the prognostic status of patients with sepsis. In addition, low EVL expression was associated with poor prognosis in sepsis.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Hebei Key R&D Program Project Special Project for the Construction of Beijing-Tianjin-Hebei Collaborative Innovation Community

Hebei Provincial Department of Education Grants for Cultivating Innovation Ability of Graduate Students at the Provincial Level

Hebei Province Graduate Innovation Funding Project

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3