A Microclimate Study of Traffic and Pedestrianization Scenarios in a Densely Populated Urban City

Author:

Wong Paulina P. Y.12ORCID

Affiliation:

1. Science Unit, Lingnan University, Tuen Mun, Hong Kong

2. Centre of Social Policy & Social Change, Lingnan University, Tuen Mun, Hong Kong

Abstract

Urban streets are known to have a significant role in creating urban microclimates. This study aims to empirically quantify temporal and spatial microclimate variation within the same street configurations with pedestrian schemes. To evaluate the urban microclimates at the pedestrian level, a detailed monitoring project was performed at five representative locations near intersections, within a busy street canyon of the typical urban community in a densely populated urban city. Monitoring was done for warm and cool seasons. A strong, significant correlation (p<0.01) was found under multiple time scenarios (traffic, nontraffic, and as a whole) and for both seasons. These findings suggest that the average urban daily temperature was not significantly reduced when there was no vehicular traffic present, whereas pedestrian activity contributed to urban heat regardless of the season. These findings provide an essential foundation for further studies on urban microclimates within pedestrianized areas and will likely lead to better urban design and policy management, especially concerning thermal comfort and Quality of Life at the pedestrian level.

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3