Fuzzy x- and s Control Charts: A Data-Adaptability and Human-Acceptance Approach

Author:

Shu Ming-Hung1ORCID,Dang Dinh-Chien1ORCID,Nguyen Thanh-Lam2ORCID,Hsu Bi-Min3,Phan Ngoc-Son4

Affiliation:

1. Department of Industrial Engineering and Management, National Kaohsiung University of Applied Sciences, Kaohsiung 80778, Taiwan

2. Office of Scientific Research, Lac Hong University, Dong Nai, Vietnam

3. Department of Industrial Engineering and Management, Cheng Shiu University, Kaohsiung 83347, Taiwan

4. Dong Nai Technology University, Dong Nai, Vietnam

Abstract

For sequentially monitoring and controlling average and variability of an online manufacturing process, x¯ and s control charts are widely utilized tools, whose constructions require the data to be real (precise) numbers. However, many quality characteristics in practice, such as surface roughness of optical lenses, have been long recorded as fuzzy data, in which the traditional x¯ and s charts have manifested some inaccessibility. Therefore, for well accommodating this fuzzy-data domain, this paper integrates fuzzy set theories to establish the fuzzy charts under a general variable-sample-size condition. First, the resolution-identity principle is exerted to erect the sample-statistics’ and control-limits’ fuzzy numbers (SSFNs and CLFNs), where the sample fuzzy data are unified and aggregated through statistical and nonlinear-programming manipulations. Then, the fuzzy-number ranking approach based on left and right integral index is brought to differentiate magnitude of fuzzy numbers and compare SSFNs and CLFNs pairwise. Thirdly, the fuzzy-logic alike reasoning is enacted to categorize process conditions with intermittent classifications between in control and out of control. Finally, a realistic example to control surface roughness on the turning process in producing optical lenses is illustrated to demonstrate their data-adaptability and human-acceptance of those integrated methodologies under fuzzy-data environments.

Funder

Ministry of Science and Technology of Taiwan

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3