Assessing the Contribution of the Oscillatory Potentials to the Genesis of the Photopic ERG with the Discrete Wavelet Transform

Author:

Gauvin Mathieu12ORCID,Dorfman Allison L.1,Trang Nataly1,Gauthier Mercedes1,Little John M.1,Lina Jean-Marc34,Lachapelle Pierre12ORCID

Affiliation:

1. Department of Ophthalmology, Research Institute of the McGill University Health Centre/Montreal Children’s Hospital, Montréal, QC, Canada

2. Department of Neurology-Neurosurgery, Research Institute of the McGill University Health Centre/Montreal Children’s Hospital, Montréal, QC, Canada

3. Département de Génie Électrique, École de Technologie Supérieure, Montréal, QC, Canada

4. Centre de Recherches Mathématiques, Montréal, QC, Canada

Abstract

The electroretinogram (ERG) is composed of slow (i.e., a-, b-waves) and fast (i.e., oscillatory potentials: OPs) components. OPs have been shown to be preferably affected in some diseases (such as diabetic retinopathy), while the a- and b-waves remain relatively intact. The purpose of this study was to determine the contribution of OPs to the building of the ERG and to examine whether a signal mostly composed of OPs could also exist. DWT analyses were performed on photopic ERGs (flash intensities: −2.23 to 2.64 log cd·s·m−2in 21 steps) obtained from normal subjects (n=40) and patients (n=21) affected with a retinopathy. In controls, the %OP value (i.e., OPs energy/ERG energy) is stimulus- and amplitude-independent (range: 56.6–61.6%; CV = 6.3%). In contrast, the %OPs measured from the ERGs of our patients varied significantly more (range: 35.4%–89.2%;p<0.05) depending on the pathology, some presenting with ERGs that are almost solely composed of OPs. In conclusion, patients may present with a wide range of %OP values. Findings herein also support the hypothesis that, in certain conditions, the photopic ERG can be mostly composed of high-frequency components.

Funder

Canadian Institutes of Health Research

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3