Oscillatory Potential-based Characterization of the Human Light-adapted Electroretinogram Using Discrete Wavelet Transform

Author:

Gao Min,Barboni Mirella Telles Salgueiro,Szabó Viktória,Nagy Zoltán Zsolt,Zobor Ditta,Nagy Balázs Vince

Abstract

Purpose: Our aim was to apply multiple discrete wavelet transformation (DWT) types to healthy light-adapted (cone) electroretinogram (ERG) signals in order to optimize DWT analysy in ERG. Oscillatory potentials (OP) were individually extracted from the signals and used to calculate an indicator for ERG analysis.Methods: Light-adapted (LA) 3.0 cd.s/m2 ISCEV standard ERGs were recorded from both eyes of 15 healthy volunteers (mean age: 36.9 ± 13.0 years old; 13 females). LA ERG signal components, such as b-wave and OPs, were analyzed using the discrete wavelet transformation (DWT). An index (%OPi) was proposed to estimate the individual oscillatory potentials (OP1-OP5) by calculating the coefficient ratio of the OP to b-wave. Multiple mother wavelet functions (i.e., Daubechies, Symlet, and Coiflet) with five orders were applied and compared statistically using Wilcoxon tests and paired t-test comparisons with Bonferroni posthoc analyses (p < 0.005). Results: OP4 shows the most energy at both low and high-frequency bands (80Hz and 160Hz), while OP2 has lower energy at the low-frequency band (80Hz) and higher energy at the high-frequency band (160Hz). The %OP2 is the largest among the five individual OPs. %OPs obtained with different wavelet functions differ from each other. Db2 and sym2 seem to be the optimal wavelets for analyzing light-adapted ERG components.Conclusion: Individual OPs of the light-adapted ERG obtained with the DWT analysis may characterize different levels of retinal dysfunction. The %OPi may serve as an indicator in ERG analysis.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3