Experimental Study on Wind Erosion Resistance and Strength of Sands Treated with Microbial-Induced Calcium Carbonate Precipitation

Author:

Wang Zhaoyu1,Zhang Nan2ORCID,Ding Jinhua3,Lu Chen1,Jin Yong1

Affiliation:

1. College of Civil Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China

2. Department of Civil Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA

3. College of Civil Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China

Abstract

Wind erosion phenomenon is commonly encountered in desert areas, which is harmful to engineering constructions and environment. This study proposed an innovative microbial-induced calcium carbonate precipitation (MICP) technique to reinforce sands for mitigating natural hazards caused by the wind erosion. A series of small-scale laboratory experiments were performed to evaluate wind erosion resistance of MICP-treated sands with different treatment cycles. The spraying method was used to treat sand specimens, and unconfined compression (UCC) strength tests were also conducted to assess the performance of the MICP technique. Experimental results revealed that the bulk density of treated sand was slightly increased with the number of MICP treatment cycles. Additionally, the wind erosion rate of treated sands was significantly decreased, and the UCC strength was increased (maximum to 4 MPa) with the number of treatment cycles, which was mainly attributed to the bonding effect from the microbial-induced CaCO3 crystals among sand particles based on the scanning electron microscopy (SEM) analyses. Such effect also facilitated to form a hard protection layer on top of the sand specimen in order to improve the wind erosion resistance of MICP-treated sands. This technique provides an alternative method to mitigate and prevent the aggravation of desertification.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3