Erosion mitigation with biocementation: a review on applications, challenges, & future perspectives

Author:

Dubey Anant AishwaryaORCID,Dhami Navdeep KaurORCID,Ravi K.ORCID,Mukherjee AbhijitORCID

Abstract

AbstractSoil erosion is a complex natural process that occurs by either individual or combined actions of wind, hydraulic currents, waves, and rain. This study comprehensively reviews biocementation-based soil stabilisation techniques for developing erosion-resilient landforms through an ecologically conscious strategy. The different pathways for biocementation occurring in nature are discussed with a focused view on the microbially induced carbonate precipitation (MICP) technique. MICP relies on biogenic calcium carbonate (CaCO3) precipitation via the urea hydrolysis route to bind the soil grains. The kinetics and factors affecting MICP are succinctly discussed to highlight the practical challenges associated with biocementation. This study emphasises the influence of MICP on erosion resistance (aeolian and hydraulic) and geotechnical properties of soils. The critical assessment of the previous studies revealed that aeolian and hydraulic erosion can be effectively controlled with a small to moderate quantity of biogenic CaCO3 (2% to 10% of soil weight). MICP marginally influences the hydraulic conductivity of soils with a substantial improvement in compressive strength, making it desirous over traditional soil cementation agents for erosion control due to the limited intervention to natural groundwater flow. However, the scientific design and findings of the previous laboratory-scale and pilot-scale research are still inconsistent for standardising biocementation techniques to transition towards upscaling. This study presents critical insights to the researchers of the environmental, geotechnical and geoenvironmental engineering domains to design their upcoming studies to tackle the challenges required for upscaling biocementation technology.

Funder

Curtin University

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Waste Management and Disposal,Applied Microbiology and Biotechnology,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3