Affiliation:
1. School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2. Collaborative Innovation Center of Taiyuan Heavy Machinery Equipment, Taiyuan 030024, China
3. Taiyuan Institute of China Coal Technology Engineering Group, Taiyuan 03006, China
Abstract
Mine-used bolter is the main equipment to solve the imbalance of excavation and anchor in well mining, and the manipulator is the main working mechanism of mine bolt drilling rig. The manipulator positioning requires high rapidity and stability. For this reason, this paper proposes a composite control method of “input shaping + fractional order PDμ control”. According to the mathematical model of the valve-controlled cylinder, the fractional-order controller PDμ is developed. At the same time, the input shaping is used to feed forward the accurate positioning and path planning of the manipulator, which not only improves the robustness of the system, but also shortens the stability time of the system and restrains the maximum amplitude of the system vibration. In this paper, the control effects of fractional order PDμ controller and integer order PD controller are compared. The results show that the maximum amplitude of the control system is reduced by 75% and the stabilization time is reduced by 60% after using the fractional order PDμ controller, which fully reflects the superiority of the fractional order controller in response speed, adjusting time, and steady-state accuracy. Finally, the control effects of “input shaping + fractional order PDμ control” and fractional order PDμ controller on the stability of the system are compared. The maximum amplitude of the system was reduced by 50% by using “input shaping + fractional order PDμ control”. Numerical simulation confirms the feasibility and effectiveness of the composite control method. This composite control method provides theoretical support for the precise positioning of the manipulator, and the high stability and high safety of the manipulator also expand the application scope and depth of the composite control method.
Subject
General Engineering,General Mathematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献