TARNet: An Efficient and Lightweight Trajectory-Based Air-Writing Recognition Model Using a CNN and LSTM Network

Author:

Alam Md. Shahinur1ORCID,Kwon Ki-Chul2,Md Imtiaz Shariar2,Hossain Md Biddut2,Kang Bong-Gyun2,Kim Nam2ORCID

Affiliation:

1. VL2 Center, Gallaudet University, 800 Florida Avenue NE Washington, D.C. 20002, USA

2. Department of Information and Communication Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea

Abstract

Air-writing is a growing research topic in the field of gesture-based writing systems. This research proposes a unified, lightweight, and general-purpose deep learning algorithm for a trajectory-based air-writing recognition network (TARNet). We combine a convolutional neural network (CNN) with a long short-term memory (LSTM) network. The architecture and applications of CNN and LSTM networks differ. LSTM is good for time series prediction yet time-consuming; on the other hand, CNN is superior in feature generation but comparatively faster. In this network, the CNN and LSTM serve as a feature generator and a recognizer, optimizing the time and accuracy, respectively. The TARNet utilizes 1-dimensional separable convolution in the first part to obtain local contextual features from low-level data (trajectories). The second part employs the recurrent algorithm to acquire the dependency of high-level output. Four publicly available air-writing digit (RealSense trajectory digit), character (RealSense trajectory character), smart-band, and Abas datasets were employed to verify the accuracy. Both the normalized and nonnormalized conditions were considered. The use of normalized data required longer training times but provided better accuracy. The test time was the same as those for nonnormalized data. The accuracy for RTD, RTC, smart-band, and Abas datasets were 99.63%, 98.74%, 95.62%, and 99.92%, respectively.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

Human-Computer Interaction,General Social Sciences,Social Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3