2D Camera-Based Air-Writing Recognition Using Hand Pose Estimation and Hybrid Deep Learning Model

Author:

Watanabe Taiki1,Maniruzzaman Md.1ORCID,Hasan Md. Al Mehedi2,Lee Hyoun-Sup3,Jang Si-Woong4,Shin Jungpil1ORCID

Affiliation:

1. School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu 965-8580, Fukushima, Japan

2. Department of Computer Science & Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh

3. Department of Applied Software Engineering, Dongeui University, Busanjin-Gu, Busan 47340, Republic of Korea

4. Department of Computer Engineering, Dongeui University, Busanjin-Gu, Busan 47340, Republic of Korea

Abstract

Air-writing is a modern human–computer interaction technology that allows participants to write words or letters with finger or hand movements in free space in a simple and intuitive manner. Air-writing recognition is a particular case of gesture recognition in which gestures can be matched to write characters and digits in the air. Air-written characters show extensive variations depending on the various writing styles of participants and their speed of articulation, which presents quite a difficult task for effective character recognition. In order to solve these difficulties, this current work proposes an air-writing system using a web camera. The proposed system consists of two parts: alphabetic recognition and digit recognition. In order to assess our proposed system, two character datasets were used: an alphabetic dataset and a numeric dataset. We collected samples from 17 participants and asked each participant to write alphabetic characters (A to Z) and numeric digits (0 to 9) about 5–10 times. At the same time, we recorded the position of the fingertips using MediaPipe. As a result, we collected 3166 samples for the alphabetic dataset and 1212 samples for the digit dataset. First, we preprocessed the dataset and then created two datasets: image data and padding sequential data. The image data were fed into the convolution neural networks (CNN) model, whereas the sequential data were fed into bidirectional long short-term memory (BiLSTM). After that, we combined these two models and trained again with 5-fold cross-validation in order to increase the character recognition accuracy. In this work, this combined model is referred to as a hybrid deep learning model. Finally, the experimental results showed that our proposed system achieved an alphabet recognition accuracy of 99.3% and a digit recognition accuracy of 99.5%. We also validated our proposed system using another publicly available 6DMG dataset. Our proposed system provided better recognition accuracy compared to the existing system.

Funder

MSIT (Ministry of Science and ICT), Korea

Competitive Research Fund of The University of Aizu, Japan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3