Affiliation:
1. School of Management Science and Engineering, Shandong Technology and Business University, Yantai, Shandong 264005, China
Abstract
Reinforced concrete (RC) beams strengthened with fiber reinforced polymers (FRPs) are structurally complex and prone to plate-end (PE) debonding. In this study, considering the extremely complicated nonlinear relationship between the PE debonding and the parameters, machine learning algorithms, namely, linear regression, ridge regression, decision tree, random forest, and neural network improved by sparrow search algorithm, are established to predict the PE debonding of RC beams strengthened with FRP. The results of reliability evaluation and parameter analysis reveal that ACI, CNR, fib-1, fib-2, and TR55-2 are a little conservative; AS and TR55-1 have the problem of overestimating the shear force; the accuracy and robustness of the SSA-BP model developed in this paper are good; the stirrup reinforcement has the greatest effect on PE debonding; and each parameter shows a complex nonlinear relationship with the shear force when PE debonding occurs.
Subject
Civil and Structural Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献