Data-Driven Model for Predicting the Compressive Strengths of GFRP-Confined Reinforced Concrete Columns
Author:
Affiliation:
1. School of Civil Engineering, Jilin Jianzhu University, Changchun 130118, China
2. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
Abstract
Publisher
MDPI AG
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Link
https://www.mdpi.com/2075-5309/13/5/1309/pdf
Reference49 articles.
1. Strength and ductility of concrete columns externally reinforced with fiber composite straps;Saadatmanesh;Struct. J.,1994
2. Prediction of strength parameters of FRP-confined concrete;Elsanadedy;Compos. Part B Eng.,2012
3. BP neural network improved by sparrow search algorithm in predicting debonding strain of FRP-strengthened RC beams;Li;Adv. Civ. Eng.,2021
4. Alternative retrofitting strategies to prevent the failure of an under-designed reinforced concrete frame;Valente;Eng. Fail. Anal.,2018
5. Seismic upgrading strategies for non-ductile plan-wise irregular R/C structures;Valente;Procedia Eng.,2013
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Comparative study of different machine learning approaches for predicting the compressive strength of palm fuel ash concrete;Journal of Building Engineering;2024-07
2. Machine-Learning Methods for Estimating Performance of Structural Concrete Members Reinforced with Fiber-Reinforced Polymers;Archives of Computational Methods in Engineering;2024-06-14
3. Data-driven PSO-CatBoost machine learning model to predict the compressive strength of CFRP- confined circular concrete specimens;Thin-Walled Structures;2024-05
4. The Efficiency of Using Machine Learning Techniques in Fiber-Reinforced-Polymer Applications in Structural Engineering;Sustainability;2023-12-19
5. Data-Driven Prediction Model for High-Strength Bolts in Composite Beams;Buildings;2023-11-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3