Affiliation:
1. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2. Jiangsu Digital Manufacture Main Laboratory, Huaian 223003, China
Abstract
The nonlinear elastodynamic modeling and analysis of the 4-UPS-UPU spatial 5-degree-of-freedom parallel mechanism are investigated. The kinetoelastodynamics theory is used to derive the elastic dynamic equations of 4-UPS-UPU spatial parallel mechanism. In order to grasp the effect of geometric nonlinearity on dynamic behaviors, such as displacement error output, velocity error output, acceleration error output, stress of driving limbs, and natural frequencies, the variations of dynamic behaviors considering geometric nonlinearity and without considering geometric nonlinearity are discussed, respectively. The numerical simulation results show the nonlinear elastodynamic model established can reasonably reflect the dynamic behaviors of 4-UPS-UPU spatial parallel mechanism with flexible driving limbs. And geometric nonlinearity is demonstrated to have significant impact on dynamic response and dynamic characteristics of spatial parallel mechanism. The researches can provide important theoretical base for the optimal design of spatial parallel mechanism.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献