Evaluating the Impacts of Optimization Horizon on the Shared Autonomous Vehicle Reservation Request System

Author:

Yang Yizhe1ORCID,Cui Hongjun1ORCID,Ma Xinwei1ORCID,Fan Wei2ORCID,Zhu Minqing3ORCID,Yao Sheng3

Affiliation:

1. School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, China

2. Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, USA

3. School of Architecture and Art Design, Hebei University of Technology, Tianjin, China

Abstract

With the development of technology, shared autonomous vehicles may become one of the main traffic modes in the future. Especially, shared autonomous vehicle reservation system, commuting, and other trips with fixed departure time mostly submit their travel requests in advance. Therefore, it is important to reasonably match shared autonomous vehicles and reservation demands. In this paper, reservation requests are divided into short-term and long-term requests by inputting requests in a more realistic way. An integer linear programming model considering operator scheduling cost and system service level is established. A detailed scheme considering rolling horizon continuity and ridesharing is used to improve the dispatching result. Based on traffic data in Delft, the Netherlands, 164 scenarios are tested in which the parking cost, fuel cost, ridesharing effect, service level, and network size are analyzed. The results show that a better relocation and ridesharing matching scheme can be obtained when the rolling horizon is small, while the overall effect is better when the rolling horizon is large. Moreover, the buffer time, distance, and travel time limit for vehicle relocation should be selected according to the request quantity and the calculation time requirement. The result can provide a suggestion for the dispatching of shared autonomous vehicle reservation system with ridesharing.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3