Affiliation:
1. School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, China
2. Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, USA
3. School of Architecture and Art Design, Hebei University of Technology, Tianjin, China
Abstract
With the development of technology, shared autonomous vehicles may become one of the main traffic modes in the future. Especially, shared autonomous vehicle reservation system, commuting, and other trips with fixed departure time mostly submit their travel requests in advance. Therefore, it is important to reasonably match shared autonomous vehicles and reservation demands. In this paper, reservation requests are divided into short-term and long-term requests by inputting requests in a more realistic way. An integer linear programming model considering operator scheduling cost and system service level is established. A detailed scheme considering rolling horizon continuity and ridesharing is used to improve the dispatching result. Based on traffic data in Delft, the Netherlands, 164 scenarios are tested in which the parking cost, fuel cost, ridesharing effect, service level, and network size are analyzed. The results show that a better relocation and ridesharing matching scheme can be obtained when the rolling horizon is small, while the overall effect is better when the rolling horizon is large. Moreover, the buffer time, distance, and travel time limit for vehicle relocation should be selected according to the request quantity and the calculation time requirement. The result can provide a suggestion for the dispatching of shared autonomous vehicle reservation system with ridesharing.
Funder
National Natural Science Foundation of China
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献