A Globally Optimal Robust Design Method for Complex Systems

Author:

Chen Yue12ORCID,Shi Jian12ORCID,Yi Xiao-jian134ORCID

Affiliation:

1. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

2. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3. Department of Overall Technology, China North Vehicle Research Institute, Beijing 100072, China

4. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China

Abstract

The uncertainty of the engineering system increases with the growing complexity of the engineering system; therefore, the tolerance to the uncertainty is essential. In the design phase, the output performance should reach the design criterion, even under large variations of design parameters. The tolerance to design parameter variations may be measured by the size of a solution space in which the output performance is guaranteed to deliver the required performance. In order to decouple dimensions, a maximum solution hyperbox, expressed by intervals with respect to each design parameter, is sought. The proposed approach combines the metaheuristic algorithm with the DIRECT algorithm where the former is used to seek the maximum size of hyperbox, and the latter is used as a checking technique that guarantees the obtained hyperbox is indeed a solution hyperbox. There are three advantages of the proposed approach. First, it is a global search and has a considerable high possibility to produce the globally maximum solution hyperbox. Second, it can be used for both analytically known and black-box performance functions. Third, it guarantees that any point selected within the obtained hyperbox satisfies the performance criterion as long as the performance function is continuous. Furthermore, the proposed approach is illustrated by numerical examples and real examples of complex systems. Results show that the proposed approach outperforms the GHZ and CES-IA methods in the literature.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3