Design Improvement for Complex Systems with Uncertainty

Author:

Chen YueORCID,Shi JianORCID,Yi Xiao-JianORCID

Abstract

The uncertainty of the engineering system increases with its complexity, therefore, the tolerance to the uncertainty becomes important. Even under large variations of design parameters, the system performance should achieve the design goal in the design phase. Therefore, engineers are interested in how to turn a bad design into a good one with the least effort in the presence of uncertainty. To improve a bad design, we classify design parameters into key parameters and non-key parameters based on engineering knowledge, and then seek the maximum solution hyper-box which already includes non-key parameters of this bad design. The solution hyper-box on which all design points are good, that is, they achieve the design goal, provides target intervals for each parameter. The bad design can be turned into a good one by only moving its key parameters into their target intervals. In this paper, the PSO-Divide-Best method is proposed to seek the maximum solution hyper-box which is in compliance with the constraints. This proposed approach has a considerably high possibility to find the globally maximum solution hyper-box that satisfies the constraints and can be used in complex systems with black-box performance functions. Finally, case studies show that the proposed approach outperforms the EPCP and IA-CES methods in the literature.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3