Analysis and Visualization of High-Dimensional Dynamical Systems’ Phase Space Using a Network-Based Approach

Author:

St Luce Shane1ORCID,Sayama Hiroki1ORCID

Affiliation:

1. Binghamton University, State University of New York, Buffalo, NY, USA

Abstract

The concept of attractors is considered critical in the study of dynamical systems as they represent the set of states that a system gravitates toward. However, it is generally difficult to analyze attractors in complex systems due to multiple reasons including chaos, high-dimensionality, and stochasticity. This paper explores a novel approach to analyzing attractors in complex systems by utilizing networks to represent phase spaces. We accomplish this by discretizing phase space and defining node associations with attractors by finding sink strongly connected components (SSCCs) within these networks. Moreover, the network representation of phase space facilitates the use of well-established techniques of network analysis to study the phase space of a complex system. We show the latter by introducing a new node-based metric called attractivity which can be used in conjunction with the SSCC as they are highly correlated. We demonstrate the proposed method by applying it to several chaotic dynamical systems and a large-scale agent-based social simulation model.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference29 articles.

1. Dynamic measures for transportation networks;O. Lordan;PLoS One,2020

2. Exposing the attractors of evolving complex adaptive systems by utilising futures images: milestones of the food sustainability journey;T. Kuhmonen;Technological Forecasting and Social Change,2017

3. The importance of chaotic attractors in modelling tumour growth;S. Abernethy;Physica A: Statistical Mechanics and Its Applications,2018

4. Tumors as chaotic attractors;S. Nikolov;Molecular BioSystems,2014

5. Phase spaces of the strategy evolution in the El Farol bar problem;S. Luce

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3