Network representations of attractors for change point detection

Author:

Tan EugeneORCID,Algar Shannon D.,Corrêa Débora,Stemler ThomasORCID,Small MichaelORCID

Abstract

AbstractA common approach to monitoring the status of physical and biological systems is through the regular measurement of various system parameters. Changes in a system’s underlying dynamics manifest as changes in the behaviour of the observed time series. For example, the transition from healthy cardiac activity to ventricular fibrillation results in erratic dynamics in measured electrocardiogram (ECG) signals. Identifying these transitions—change point detection—can be valuable in preparing responses to mitigate the effects of undesirable system changes. Here, we present a data-driven method of detecting change points using a phase space approach. Delay embedded trajectories are used to construct an ‘attractor network’, a discrete Markov-chain representation of the system’s attractor. Once constructed, the attractor network is used to assess the level of surprise of future observations where unusual movements in phase space are assigned high surprise scores. Persistent high surprise scores indicate deviations from the attractor and are used to infer change points. Using our approach, we find that the attractor network is effective in automatically detecting the onset of ventricular fibrillation (VF) from observed ECG data. We also test the flexibility of our method on artificial data sets and demonstrate its ability to distinguish between normal and surrogate time series.

Funder

Robert & Maude Gledden Scholarship A.F. Pillow Postgraduate Scholarship

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3