Artificial Intelligence-Based Echocardiographic Left Atrial Volume Measurement with Pulmonary Vein Comparison

Author:

Zhu Mengyun1ORCID,Fan Ximin1ORCID,Liu Weijing1ORCID,Shen Jianying1ORCID,Chen Wei1ORCID,Xu Yawei1ORCID,Yu Xuejing1ORCID

Affiliation:

1. Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China

Abstract

This paper combines echocardiographic signal processing and artificial intelligence technology to propose a deep neural network model adapted to echocardiographic signals to achieve left atrial volume measurement and automatic assessment of pulmonary veins efficiently and quickly. Based on the echocardiographic signal generation mechanism and detection method, an experimental scheme for the echocardiographic signal acquisition was designed. The echocardiographic signal data of healthy subjects were measured in four different experimental states, and a database of left atrial volume measurements and pulmonary veins was constructed. Combining the correspondence between ECG signals and echocardiographic signals in the time domain, a series of preprocessing such as denoising, feature point localization, and segmentation of the cardiac cycle was realized by wavelet transform and threshold method to complete the data collection. This paper proposes a comparative model based on artificial intelligence, adapts to the characteristics of one-dimensional time-series echocardiographic signals, automatically extracts the deep features of echocardiographic signals, effectively reduces the subjective influence of manual feature selection, and realizes the automatic classification and evaluation of human left atrial volume measurement and pulmonary veins under different states. The experimental results show that the proposed BP neural network model has good adaptability and classification performance in the tasks of LV volume measurement and pulmonary vein automatic classification evaluation and achieves an average test accuracy of over 96.58%. The average root-mean-square error percentage of signal compression is only 0.65% by extracting the coding features of the original echocardiographic signal through the convolutional autoencoder, which completes the signal compression with low loss. Comparing the training time and classification accuracy of the LSTM network with the original signal and encoded features, the experimental results show that the AI model can greatly reduce the model training time cost and achieve an average accuracy of 97.97% in the test set and increase the real-time performance of the left atrial volume measurement and pulmonary vein evaluation as well as the security of the data transmission process, which is very important for the comparison of left atrial volume measurement and pulmonary vein. It is of great practical importance to compare left atrial volume measurements with pulmonary veins.

Funder

Tongji University School of Medicine

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3