Effect of Maternal Administration of Edible Bird’s Nest on the Learning and Memory Abilities of Suckling Offspring in Mice

Author:

Xie Yong1ORCID,Zeng Hongliang2,Huang Zhiji2,Xu Hui2,Fan Qunyan3,Zhang Yi2ORCID,Zheng Baodong2ORCID

Affiliation:

1. College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China

2. College of Food Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China

3. Xiamen Silk Food Co. Ltd, Xiamen 361100, China

Abstract

Although human brains continue developing throughout the underage developmental stages, the infancy period is considered the most important one for the whole life. It has been reported that sialic acid from edible bird’s nest (EBN) can facilitate the development of brain and intelligence. In this study, by oral administration of EBN to female mice during the pregnancy or lactation period, the effects of EBN on the levels of sialic acid in mouse milk were determined using high-performance liquid chromatography (HPLC). Furthermore, the spatial learning performances of their offspring were assessed using the Morris water maze test. Additionally, cerebral malondialdehyde (MDA), superoxide dismutase (SOD), choline acetyltransferase (ChAT), and acetylcholinesterase (AChE) in cubs nursed by the female mice given the EBN homogenate were examined, while BDNF immunohistochemical staining and neuron count in hippocampi were investigated as well. These results showed that administration with EBN in maternal mice during pregnancy or lactation period can improve the learning and memory functions in their offspring, possibly by increasing the activities of SOD and ChAT and, at the meantime, decreasing the levels of MDA and activities of AChE. Moreover, BDNF levels for CA1, CA2, and CA3 regions in hippocampi and the numbers of dyed neurons in CA1, CA2, CA3, and DG regions among the offspring were significantly enhanced due to the intake of EBN by the maternal mice. We concluded that maternal administration of EBN during the pregnancy and lactation periods can improve the spatial learning performances in the offspring.

Funder

Leading Talents Support Program of Science and Technology Innovation in Fujian Province

Publisher

Hindawi Limited

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3