Nrf2 Activation Protects Mouse Beta Cells from Glucolipotoxicity by Restoring Mitochondrial Function and Physiological Redox Balance

Author:

Schultheis Johanna1,Beckmann Dirk1,Mulac Dennis2,Müller Lena3,Esselen Melanie3,Düfer Martina1ORCID

Affiliation:

1. University of Münster, Pharmaceutical and Medicinal Chemistry, Dept. of Pharmacology, Corrensstraße 48, 48149 Münster, Germany

2. University of Münster, Pharmaceutical Technology and Biopharmacy, Corrensstraße 48, 48149 Münster, Germany

3. University of Münster, Institute of Food Chemistry, Corrensstraße 45, 48149 Münster, Germany

Abstract

Influencing the redox balance of pancreatic beta cells could be a promising strategy for the treatment of diabetes. Nuclear factor erythroid 2p45-related factor 2 (Nrf2) is present in beta cells and regulates numerous genes involved in antioxidant defense. As reactive oxygen species (ROS) are important for beta cell signaling but induce oxidative stress when present in excess, this study elucidates the influence of Nrf2-activating compounds on different kinds of ROS and correlates changes in redox balance to effects on mitochondrial function, insulin release, and cell viability. Acute glucose stimulation (15 mmol/L) of murine islet cells of C57Bl/6N mice affects ROS and redox status of the cells differently. Those ROS monitored by dihydroethidium, which detects superoxide radical anions, decrease. By contrast, oxidant status, monitored by dichlorodihydrofluorescein, as well as intracellular H2O2, increases. Glucolipotoxicity completely prevents these fast, glucose-mediated alterations and inhibits glucose-induced NAD(P)H production, mitochondrial hyperpolarization, and ATP synthesis. Oltipraz (10 μmol/L) or dimethyl fumarate (DMF, 50 μmol/L) leads to nuclear accumulation of Nrf2, restores mitochondrial activity and glucose-dependent ROS turnover, and antagonizes glucolipotoxicity-induced inhibition of insulin release and apoptosis. Importantly, these beneficial effects only occur when beta cells are challenged and damaged by high lipid and carbohydrate supply. At physiological conditions, insulin release is markedly reduced in response to both Nrf2 activators. This is not associated with severe impairment of glucose-induced mitochondrial hyperpolarization or a rise in apoptosis but coincides with altered ROS handling. In conclusion, Nrf2 activators protect beta cells against glucolipotoxicity by preserving mitochondrial function and redox balance. As our data show that this maintains glucose-stimulated insulin secretion, targeting Nrf2 might be suited to ameliorate progression of type 2 diabetes mellitus. By contrast, nonstressed beta cells do not benefit from Nrf2 activation, thus underlining the importance of physiological shifts in ROS homeostasis for the regulation of beta cell function.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3