Simulation and Compensation of Axial Geometric Errors for Cycloidal Gears Based on Form Grinding

Author:

Jiang Chuang12,Wang Huiliang12ORCID,Han Tianhao3,Liu Xing1

Affiliation:

1. School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang, Henan 471003, China

2. Collaborative Innovation Center of Machinery and Equipment Advanced Manufacturing of Henan Province, Henan University of Science and Technology, Luoyang 471003, China

3. Technology Research Institute, CITIC Heavy Industries Co., Ltd., Luoyang, Henan 471039, China

Abstract

To increase quality, reduce cycloidal gear noise, and avoid unnecessary vibration and shock, a compensation of axial geometric errors method is proposed based on the cycloidal gear form grinding. In the process of machining cycloidal gears, the relative position relationship between the grinding wheel and workpiece is affected by geometric errors of the motion axes, which has serious effects on the surface accuracy of the cycloidal gears. Combined with cycloidal gear form grinding kinematic principles, a geometric error model for each axis of a four-axis computer numerical control form grinding machine is established. By changing the compensation value of the geometrical errors on six degrees of freedom, the error of the cycloid gear tooth surface machined is obtained. Based on a sensitivity analysis of geometrical errors of each axis, the corrections are determined through an optimization process that targets the minimization of the tooth flank errors. The geometric errors of each axis of the cycloid gear grinding machine are compensated, and then, the cycloid gears produced by the machine are processed. Through the processing experiment, the error data of the actual processing before and after the compensation are compared, which indicates that the machining accuracy of the cycloid gear grinding machine is obviously improved. It has an important guiding significance in improving the precision and performance of large CNC form gear grinding machines.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3