Synthesis and Characterization of a Novel Bentonite Composite Superabsorbent Resin Based on Starch

Author:

Li Dongfang1ORCID,Guo Jing2,Wang Xinru3,Pei Lingnan4,Li Wenjuan1,Liu Yanxia1,Deng Yongchang3,Chen Zhu3ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering, Jining Normal University, Ulanqab 012000, China

2. College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China

3. Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China

4. School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China

Abstract

A superabsorbent resin (SAR) is a functional polymer with a high water absorption capacity, which has been widely used in many fields. In this study, a modified aqueous solution polymerization process was adopted to synthesize a SAR. The optimum synthetical mass ratios of starch, bentonite, potassium persulfate (K2S2O8), and N,N′-methylene-bis-acrylamide to acrylic acid (AA) were 7.14%, 3.57%, 0.29%, and 0.057%, respectively, and the neutralization degree of AA was 50%. The molecular structure and the surface morphologies of the SAR were confirmed using Fourier transform infrared spectroscopy and scanning electron microscopy. The SAR had a water absorbency of 1300 mL/g in distilled water and 56 mL/g in 0.9 wt.% NaCl solution. The water absorption rate reached 72.65% of the maximum water absorption in 1 hour and swelled to equilibrium in 4 hours. The water retention rate was 45.86% after heating and evaporation at 150°C for 1 hour. The moisture absorption rate reached 28.2% after 10 days of placement. The modified technology provides a new synthetic method for production of SARs, which is characterized by a lack of nitrogen protection, the direct use of raw AA and potato starch, a simplified synthesis process, substantially improved efficiency, and lower production costs.

Funder

Scientific Research Project of Colleges and Universities in Inner Mongolia Autonomous Region of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3