Affiliation:
1. Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education Key Laboratory of Eco‐Environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
2. Northwest Engineering Co. Ltd. Power China Xi'an 710065 China
Abstract
AbstractModified MIL‐101(Al)‐NH2 (MIL‐101(Al)‐NH2‐net) is used as a crosslinking agent and acrylic acid (AA) as a monomer, the MIL‐101(Al)‐NH2‐net grafted polyacrylic acid (MIL‐101(Al)‐NH2‐net‐g‐PAA (MAP)) composite water‐absorbent material is synthesized using the free radical polymerization method to study the application of composite absorbent materials in water collection. The structure and morphology of the composite water‐absorbent material are characterized using Fourier transform infrared spectrometry (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM), Brunauer Emmett Teller (BET), and thermogravimetric analysis (TG), and the contents of ammonium persulfate (APS), MIL‐101(Al)‐NH2‐net, and neutralization degree of AA are optimized. Under optimal conditions, the water absorption ratios of the composite materials in distilled water, tap water, and 0.9% NaCl solution are 744, 169.5, and 85.5 g g−1. In addition, the properties of collecting water vapor are investigated. At 25 °C, 50% Relative Humidity (RH), 70% RH, and 90% RH, the MAP water vapor adsorption capacity is 0.0312, 0.5760, and 1.6856 g g−1, respectively. The water vapor adsorption of MIL‐101(Al)‐NH2 and MIL‐101(Al)‐NH2 self‐polymerization products are 0.025 and 0.1278 g g−1, respectively. The result showed that autopolymerization can improve the water vapor adsorption performance.
Funder
National Natural Science Foundation of China
Program for Changjiang Scholars and Innovative Research Team in University
Subject
General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献