Mechanical Responses of a Deeply Buried Granite Exposed to Multilevel Uniaxial and Triaxial Cyclic Stresses: Insights into Deformation Behavior, Energy Dissipation, and Hysteresis

Author:

Song Zhengyang12ORCID,Wu Yunfeng1ORCID,Yang Zhen1,Cai Xin3ORCID,Jia Yunzhong4ORCID,Zhang Min5

Affiliation:

1. Department of Civil Engineering, School of Civil & Resource Engineering, University of Science & Technology Beijing, Beijing 100083, China

2. Xi’an University of Science and Technology, State Key Laboratory of Coal Resources in Western China, Xi’an 710054, China

3. School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410083, China

4. Department of Earth Sciences, Uppsala University, Uppsala 75236, Sweden

5. Geotechnical Institute, TU Bergakademie Freiberg, Freiberg 09599, Germany

Abstract

This article presents the results for cyclic uni/triaxial tests on the deeply seated granite samples drilled from a −915 m deep tunnel in Sanshandao (SSD) gold mine. The monotonic and cyclic tests were carried out to observe the mechanical responses of the granite samples under different loading regimes. The disparities concerning the strain evolution and compressive strength of granite samples considering monotonic and cyclic uniaxial and triaxial loading are presented. Deformation behaviour, dissipated energy, and hysteresis are documented and evaluated. Quantitative correlations between strain evolution and cyclic stress levels are revealed. The amount of energy transformation during uniaxial and triaxial cyclic loading is determined. The impacts of confining pressure level on ultimate strain, energy dissipation, and stress-strain phase shift are presented. The mechanical responses of the granite samples subjected to different stress paths and loading strategies are summarised, and corresponding interpretations are given to clarify the differences of mechanical behaviour encountered in distinct loading methods.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3