Biomarkers of Periodontal Tissue Remodeling during Orthodontic Tooth Movement inMice and Men: Overview and Clinical Relevance

Author:

d'Apuzzo Fabrizia1,Cappabianca Salvatore2,Ciavarella Domenico3,Monsurrò Angela1,Silvestrini-Biavati Armando4,Perillo Letizia1ORCID

Affiliation:

1. Department of Orthodontics, Second University of Naples, Via L. De Crecchio 6, 80138 Naples, Italy

2. Department of Radiology, Second University of Naples, Piazza L. Miraglia 5, 80138 Naples, Italy

3. Department of Clinical and Experimental Medicine, University of Foggia, Viale L. Pinto, 71100 Foggia, Italy

4. Department of Orthodontics, University of Genoa, Corso Europa 35, 16132 Genoa, Italy

Abstract

Biologically active substances are expressed by cells within the periodontium in response to mechanical stimuli from orthodontic appliances. Several possible biomarkers representing biological modifications during specific phenomena as simile-inflammatory process, bone resorption and formation, periodontal ligament changes, and vascular and neural responses are proposed. Citations to potentially published trials were conducted by searching PubMed, Cochrane databases, and scientific textbooks. Additionally, hand searching and contact with experts in the area were undertaken to identify potentially relevant published and unpublished studies. Selection criteria were as follows: animal models involving only mice and rats undergoing orthodontic treatment; collection of gingival crevicular fluid (GCF) as a noninvasively procedure for humans; no other simultaneous treatment that could affect experimental orthodontic movement. The data suggest that knowledge of the remodeling process occurring in periodontal tissues during orthodontic and orthopedic therapies may be a clinical usefulness procedure leading to proper choice of mechanical stress to improve and to shorten the period of treatment, avoiding adverse consequences. The relevance for clinicians of evaluating the rate of some substances as valid biomarkers of periodontal effects during orthodontic movement, by means of two models of study,mice and men, is underlined.

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3