Affiliation:
1. Signal Processing Laboratory, Physics Department, Sciences Faculty of Tunis, University of Tunis ElManar, 1060 Tunis, Tunisia
Abstract
This paper focuses on a robust feature extraction algorithm for automatic classification of pathological and normal voices in noisy environments. The proposed algorithm is based on human auditory processing and the nonlinear Teager-Kaiser energy operator. The robust features which labeled Teager Energy Cepstrum Coefficients (TECCs) are computed in three steps. Firstly, each speech signal frame is passed through a Gammatone or Mel scale triangular filter bank. Then, the absolute value of the Teager energy operator of the short-time spectrum is calculated. Finally, the discrete cosine transform of the log-filtered Teager Energy spectrum is applied. This feature is proposed to identify the pathological voices using a developed neural system of multilayer perceptron (MLP). We evaluate the developed method using mixed voice database composed of recorded voice samples from normophonic or dysphonic speakers. In order to show the robustness of the proposed feature in detection of pathological voices at different White Gaussian noise levels, we compare its performance with results for clean environments. The experimental results show that TECCs computed from Gammatone filter bank are more robust in noisy environments than other extracted features, while their performance is practically similar to clean environments.
Subject
General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献