The Use of Deep Learning Software in the Detection of Voice Disorders: A Systematic Review

Author:

Barlow Joshua1ORCID,Sragi Zara1,Rivera‐Rivera Gabriel1,Al‐Awady Abdurrahman1,Daşdöğen Ümit1,Courey Mark S.1ORCID,Kirke Diana N.1

Affiliation:

1. Department of Otolaryngology–Head and Neck Surgery Icahn School of Medicine at Mount Sinai New York City New York USA

Abstract

AbstractObjectiveTo summarize the use of deep learning in the detection of voice disorders using acoustic and laryngoscopic input, compare specific neural networks in terms of accuracy, and assess their effectiveness compared to expert clinical visual examination.Data SourcesEmbase, MEDLINE, and Cochrane Central.Review MethodsDatabases were screened through November 11, 2023 for relevant studies. The inclusion criteria required studies to utilize a specified deep learning method, use laryngoscopy or acoustic input, and measure accuracy of binary classification between healthy patients and those with voice disorders.ResultsThirty‐four studies met the inclusion criteria, with 18 focusing on voice analysis, 15 on imaging analysis, and 1 both. Across the 18 acoustic studies, 21 programs were used for identification of organic and functional voice disorders. These technologies included 10 convolutional neural networks (CNNs), 6 multilayer perceptrons (MLPs), and 5 other neural networks. The binary classification systems yielded a mean accuracy of 89.0% overall, including 93.7% for MLP programs and 84.5% for CNNs. Among the 15 imaging analysis studies, a total of 23 programs were utilized, resulting in a mean accuracy of 91.3%. Specifically, the twenty CNNs achieved a mean accuracy of 92.6% compared to 83.0% for the 3 MLPs.ConclusionDeep learning models were shown to be highly accurate in the detection of voice pathology, with CNNs most effective for assessing laryngoscopy images and MLPs most effective for assessing acoustic input. While deep learning methods outperformed expert clinical exam in limited comparisons, further studies integrating external validation are necessary.

Publisher

Wiley

Subject

Otorhinolaryngology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3