On the exterior magnetic field and silent sources in magnetoencephalography

Author:

Dassios George1,Kariotou Fotini2

Affiliation:

1. Division of Applied Mathematics, Department of Chemical Engineering, University of Patras, Patras 26504, Greece

2. Institute of Chemical Engineering and High Temperature Chemical Processes (ICE/HT), Foundation for Research Technology-Hellas (FORTH), Patras 26504, Greece

Abstract

Two main results are included in this paper. The first one deals with the leading asymptotic term of the magnetic field outside any conductive medium. In accord with physical reality, it is proved mathematically that the leading approximation is a quadrupole term which means that the conductive brain tissue weakens the intensity of the magnetic field outside the head. The second one concerns the orientation of the silent sources when the geometry of the brain model is not a sphere but an ellipsoid which provides the best possible mathematical approximation of the human brain. It is shown that what characterizes a dipole source as “silent” is not the collinearity of the dipole moment with its position vector, but the fact that the dipole moment lives in the Gaussian image space at the point where the position vector meets the surface of the ellipsoid. The appropriate representation for the spheroidal case is also included.

Publisher

Hindawi Limited

Subject

Applied Mathematics,Analysis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3