Affiliation:
1. Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China
2. Institute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
Abstract
Ship detention serves as an obligatory but efficient manner in port state control (PSC) inspection, and accurate ship detention prediction provides early warning information for maritime traffic participants. Previous studies mainly focused on exploiting the relationship between ship factors (i.e., ship age and ship type) and PSC inspection reports. Less attention was paid to identify and predict the correlation between ship fatal deficiency and ship detention event. To address the issue, we propose a novel framework to identify crucial ship deficiency types with an optimized analytic hierarchy process (AHP) model. Then, the Naïve Bayes model is introduced to predict the ship detention probability considering weights of the identified crucial ship deficiency types. Finally, we evaluate our proposed model performance on the empirical PSC inspection dataset. The research findings can help PSC officials easily determine main ship deficiencies, and thus, less time cost is required for implementing the PSC inspection procedure. In that manner, the PSC officials can quickly make ship detention decision and thus enhance maritime traffic safety.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献