Selectivity of Dietary Phenolics for Inhibition of Human Monoamine Oxidases A and B

Author:

Zhang Zhenxian1,Hamada Hiroki2,Gerk Phillip M.1ORCID

Affiliation:

1. Virginia Commonwealth University School of Pharmacy, Department of Pharmaceutics, 410 N. 12th Street, Richmond, VA 23298-0533, USA

2. Department of Life Science, Okayama University of Science, 1-1 Ridai-cho Kita-ku Okayama, 700-0005, Japan

Abstract

Monoamine oxidases (MAOs) regulate local levels of neurotransmitters such as dopamine, norepinephrine, and serotonin and thus have been targeted by drugs for the treatment of certain CNS disorders. However, recent studies have shown that these enzymes are upregulated with age in nervous and cardiac tissues and may be involved in degeneration of these tissues, since their metabolic mechanism releases hydrogen peroxide leading to oxidative stress. Thus, targeting these enzymes may be a potential anti-aging strategy. The purpose of this study was to compare the MAO inhibition and selectivity of selected dietary phenolic compounds, using a previously validated assay that would avoid interference from the compounds. Kynuramine metabolism by human recombinant MAO-A and MAO-B leads to formation of 4-hydroxyquinoline, with Vmax values of 10.2±0.2 and 7.35±0.69 nmol/mg/min, respectively, and Km values of 23.1±0.8 μM and 18.0±2.3 μM, respectively. For oral dosing and interactions with the gastrointestinal tract, curcumin, guaiacol, isoeugenol, pterostilbene, resveratrol, and zingerone were tested at their highest expected luminal concentrations from an oral dose. Each of these significantly inhibited both enzymes except for zingerone, which only inhibited MAO-A. The IC50 values were determined, and selectivity indices (MAO-A/MAO-B IC50 ratios) were calculated. Resveratrol and isoeugenol were selective for MAO-A, with IC50 values of 0.313±0.008 and 3.72±0.20 μM and selectivity indices of 50.5 and 27.4, respectively. Pterostilbene was selective for MAO-B, with IC50 of 0.138±0.013 μM and selectivity index of 0.0103. The inhibition of resveratrol (MAO-A) and pterostilbene (MAO-B) was consistent with competitive time-independent mechanisms. Resveratrol 4’-glucoside was the only compound which inhibited MAO-A, but itself, resveratrol 3-glucoside, and pterostilbene 4’-glucoside failed to inhibit MAO-B. Additional studies are needed to establish the effects of these compounds on MAO-A and/or MAO-B in humans.

Funder

VCU School of Pharmacy

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3