Monoamine Oxidases, Oxidative Stress, and Altered Mitochondrial Dynamics in Cardiac Ageing

Author:

Maggiorani Damien1,Manzella Nicola1,Edmondson Dale E.2,Mattevi Andrea3,Parini Angelo1,Binda Claudia3,Mialet-Perez Jeanne1ORCID

Affiliation:

1. Institut des Maladies Métaboliques et Cardiovasculaires, INSERM, Université de Toulouse, Toulouse, France

2. Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA, USA

3. Department of Biology and Biotechnology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy

Abstract

The advances in healthcare over the past several decades have resulted in populations now living longer. With this increase in longevity, a wider prevalence of cardiovascular diseases is more common and known to be a major factor in rising healthcare costs. A wealth of scientific evidence has implicated cell senescence as an important component in the etiology of these age-dependent pathologies. A number of studies indicate that an excess of reactive oxygen species (ROS) contributes to trigger and accelerate the cardiac senescence processes, and a new role of monoamine oxidases, MAO-A and MAO-B, is emerging in this context. These mitochondrial enzymes regulate the level of catecholamines and serotonin by catalyzing their oxidative deamination in the heart. MAOs’ expression substantially increases with ageing (6-fold MAO-A in the heart and 4-fold MAO-B in neuronal tissue), and their involvement in cardiac diseases is supposedly related to the formation of ROS, via the hydrogen peroxide produced during the substrate degradation. Here, we will review the most recent advances in this field and describe why MAOs could be effective targets in order to prevent age-associated cardiovascular disease.

Funder

Fondazione Cariplo

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3