Deposition of PEDOT: PSS Nanoparticles as a Conductive Microlayer Anode in OLEDs Device by Desktop Inkjet Printer

Author:

Ummartyotin S.1,Juntaro J.2,Wu C.2,Sain M.2,Manuspiya H.1

Affiliation:

1. The Petroleum and Petrochemical College, Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University, Bangkok 10330, Thailand

2. Center for Biocomposites and Biomaterials Processing, Faculty of Forestry, University of Toronto, Toronto, ON, Canada M5S 3B3

Abstract

A simple microfabrication technique for delivering macromolecules and patterning microelectrode arrays using desktop inkjet printer was described. Aqueous solution of nanoparticle of poly (3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrene sulfonic acid (PSS) was prepared while its particle size, the surface tension, and the viscosity of the solution were adjusted to be suitable for deposition on a flexible cellulose nanocomposite substrate via inkjet printer. The statistical average of PEDOT: PSS particle size of 100 nm was observed. The microthickness, surface morphology, and electrical conductivity of the printed substrate were then characterized by profilometer, atomic force microscope (AFM), and four-point probe electrical measurement, respectively. The inkjet deposition of PEDOT: PSS was successfully carried out, whilst retained its transparency feature. Highly smooth surface (roughness ~23–44 nm) was achieved.

Funder

Agricultural Bioproducts Innovation Program

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3