A Laboratory and Numerical Simulation Study on Compression Characteristics of Coal Gangue Particles with Optimal Size Distribution Based on Shape Statistics

Author:

Cheng Lichao123,Qin Yiling13,Li Xinwang13ORCID,Zhao Xinyuan13

Affiliation:

1. School of Mining and Geomatics, Hebei University of Engineering, Handan 056038, Hebei, China

2. State and Local Joint Engineering Laboratory for Gas Drainage & Ground Control of Deep Mines, Henan Polytechnic University, Jiaozuo 454003, China

3. Coal Resources Development and Construction Application Technology Research Center of Universities in Hebei Province, Hebei University of Engineering, Handan 056038, China

Abstract

Gangue particles (GP) are an important part of solid filling materials in coal mines. The compression characteristics (CC) of gangue determine whether it can effectively control roof subsidence. The particle size distribution (PSD) of GP is the main factor affecting the CC; therefore, it is important to find the optimal size distribution of GP and to investigate the macrodeformation and micromotion characteristics of gangue compression. Here, Talbol theory was used to study the compression resistance of gangue granules. It is concluded that the compression modulus of continuously graded gangue is the largest when the Talbol coefficientnis 0.4. The engineering discrete element method was used to simulate and analyze the optimum PSD (n = 0.4) and to study the stress transfer of GP during compression. The results show that with the increase of stress, the microstructure of gangue particles changes in the support skeleton, the skeleton is destroyed and particles flow, thus forming a more stable support skeleton. The resultant force direction of particles changes from the initial vertical downward to the scattered distribution of the central axis and finally to a generally scattered distribution. The number of strong chains and weak chains increases, and the main conductive stress on strong chains becomes a uniform conductive stress on the weak chains. Most of the particles in the upper and middle parts of the model exhibit linear motion. The trajectories of the middle and lower particles in the model are clustered, undergoing only small displacement.

Funder

Key Research Development Project of Hebei Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3