Microscopic fabric evolution and macroscopic deformation response of gangue solid waste filler considering block shape under different confining pressures

Author:

Chen Liang,Li Junmeng,Zhang Dongsheng,Fan Gangwei,Zhang Wei,Guo Yachao

Abstract

AbstractThe irregular shape of gangue blocks will affect the coordination structure between blocks in the crushed gangue accumulation body, and then affect the engineering mechanical properties of crushed gangue in the process of load-bearing compression. In this paper, through CT scanning experiment, particle flow numerical simulation experiment, and comprehensive application of image processing, 3D reconstruction, FLAC/PFC3D continuum—discrete coupling technology, the gangue digital 3D model and the numerical model of crushed gangue particle flow under triaxial compression condition considering the real shape of the block were obtained. The microscopic fabric evolution law and macroscopic deformation response characteristics of crushed gangue considering triaxial compression condition and different confining pressures were studied. The results show that: (1) the bearing capacity of crushed gangue materials increases with the increase of confining pressure; (2) the block aggregate in the gangue sample is gradually compacted, and the lateral deformation of the sample is changed from “extruding to the axis” to “bulging to the periphery”; (3) the vertical movement of the block decreases gradually from the top to the bottom of the sample, and there is a “triangle area” of block displacement at the top and bottom of the sample; the larger the confining pressure, the smaller the vertical displacement range at the top of the sample; (4) the process of “instability and failure—optimization and reconstruction” of skeleton force chain structure occurs constantly; as confining pressure increases, the stability of skeleton force chain structure and the bearing capacity of crushed gangue sample increases; (5) under the same strain state, the greater the confining pressure, the higher the fragmentation degree of the sample. This study reveals the internal mechanism of macro deformation of crushed gangue under the triaxial compression from the perspective of the mesoscopic fabric evolution. The research results are of great significance for the selection of crushed gangue in engineering application. In addition, the research results also have a significant impact on promoting the reasonable disposal and resource utilization of gangue solid waste and protecting the ecological environment of mining areas.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3