Electrical Impedance Tomography-Based Abdominal Subcutaneous Fat Estimation Method Using Deep Learning

Author:

Lee Kyounghun1ORCID,Yoo Minha2,Jargal Ariungerel3ORCID,Kwon Hyeuknam4ORCID

Affiliation:

1. Center for Mathematical Analysis and Computation, Yonsei University, Seoul 03722, Republic of Korea

2. National Institute for Mathematical Science, Daejeon 34047, Republic of Korea

3. Department of Computational Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea

4. College of Science and Technology, Yonsei University, Wonju 26493, Republic of Korea

Abstract

This paper proposes a deep learning method based on electrical impedance tomography (EIT) to estimate the thickness of abdominal subcutaneous fat. EIT for evaluating the thickness of abdominal subcutaneous fat is an absolute imaging problem that aims at reconstructing conductivity distributions from current-to-voltage data. Existing reconstruction methods based on EIT have difficulty handling the inherent drawbacks of strong nonlinearity and severe ill-posedness of EIT; hence, absolute imaging may not be possible using linearized methods. To handle nonlinearity and ill-posedness, we propose a deep learning method that finds useful solutions within a restricted admissible set by accounting for prior information regarding abdominal anatomy. We determined that a specially designed training dataset used during the deep learning process significantly reduces ill-posedness in the absolute EIT problem. In the preprocessing stage, we normalize current-voltage data to alleviate the effects of electrodeposition and body geometry by exploiting knowledge regarding electrode positions and body geometry. The performance of the proposed method is demonstrated through numerical simulations and phantom experiments using a 10 channel EIT system and a human-like domain.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3