Active Learning for Constrained Document Clustering with Uncertainty Region

Author:

Balafar M. A.1ORCID,Hazratgholizadeh R.1,Derakhshi M. R. F.2

Affiliation:

1. Department of IT, Faculty of Engineering, University of Tabriz, Tabriz, Iran

2. Department of Computer, Faculty of Engineering, University of Tabriz, Tabriz, Iran

Abstract

Constrained clustering is intended to improve accuracy and personalization based on the constraints expressed by an Oracle. In this paper, a new constrained clustering algorithm is proposed and some of the informative data pairs are selected during an iterative process. Then, they are presented to the Oracle and their relation is answered with “Must-link (ML) or Cannot-link (CL).” In each iteration, first, the support vector machine (SVM) is utilized based on the label produced by the current clustering. According to the distance of each document from the hyperplane, the distance matrix is created. Also, based on cosine similarity of word2vector of each document, the similarity matrix is created. Two types of probability (similarity and degree of similarity) are calculated and they are smoothed for belonging to neighborhoods. Neighborhoods form the samples that are labeled by Oracle, to be in the same cluster. Finally, at the end of each iteration, the data with a greater level of uncertainty (in term of probability) is selected for questioning the oracle. In order to evaluate, the proposed method is compared with famous state-of-the-art methods based on two criteria and over a standard dataset. The result demonstrates an increased accuracy and stability of the obtained result with fewer questions.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3