Affiliation:
1. College of Information and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China
Abstract
The Bag-of-Words (BoW) model is a well-known image categorization technique. However, in conventional BoW, neither the vocabulary size nor the visual words can be determined automatically. To overcome these problems, a hybrid clustering approach that combines improved hierarchical clustering with a K-means algorithm is proposed. We present a cluster validity index for the hierarchical clustering algorithm to adaptively determine when the algorithm should terminate and the optimal number of clusters. Furthermore, we improve the max-min distance method to optimize the initial cluster centers. The optimal number of clusters and initial cluster centers are fed into K-means, and finally the vocabulary size and visual words are obtained. The proposed approach is extensively evaluated on two visual datasets. The experimental results show that the proposed method outperforms the conventional BoW model in terms of categorization and demonstrate the feasibility and effectiveness of our approach.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献