ISAR Autofocus Imaging Algorithm for Maneuvering Targets Based on Phase Retrieval and Keystone Transform

Author:

Shi Hongyin12ORCID,Yang Ting12ORCID,Liu Yue12,Si Jingjing12

Affiliation:

1. Yanshan University, School of Information Science and Engineering, Qinhuangdao 066004, China

2. Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao 066004, China

Abstract

In the current scenario of high-range resolution radar and noncooperative target, the rotational motion parameters of the target are unknown and migration through resolution cells (MTRC) is apparent in the obtained inverse synthetic aperture radar (ISAR)images, in both slant-range and cross-range directions. In the case of the high-speed maneuvering target with a small value of rotation, the phase retrieval algorithm can be applied to compensate for the translational motion to form an autofocusing image. However, when the target has a relatively large rotation angle during the coherent integration time, phase retrieval method cannot get an acceptable image for viewing and analysis as the location of the scatterer will not be true due to the Doppler shift imposed by the target’s rotational motion. In this paper, a novel ISAR imaging method for maneuvering targets based on phase retrieval and keystone transform is proposed, which can effectively solve the above problems. First, the keystone transform is used to solve the MTRC effects caused by the rotation component. Next, phase errors caused by the remaining translational motion will be removed by employing phase retrieval algorithm, allowing the scatterers are always kept in their range cells. Finally, the Doppler frequency shifts of scatterers will be time invariant in the phase of the received signal. Furthermore, this approach does not need to estimate the motion parameters of the target, which simplifies the processing steps. The simulated results demonstrate the validity of this method.

Funder

Natural Science Foundation of Hebei Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3