SAR Signal Formation and Image Reconstruction of a Moving Sea Target

Author:

Lazarov AndonORCID

Abstract

Maritime application of synthetic aperture radar (SAR) technology for sea-target surveillance and imaging is considered in this study. A SAR scenario, including the kinematics of a SAR satellite and a ship moving on the sea, along with the geometry of the target, are analytically described. A linear frequency modulation (LFM) waveform is applied for the target’s illumination. Based on the target’s geometry, SAR and target kinematics and the LFM waveform, a SAR signal model is synthesized. It is proven that the process of signal formation is a transformation of the three-dimensional (3D) image into a two-dimensional (2D) signal, whereas the target’s 2D imaging is an inverse transformation of the 2D signal into the target’s 2D image. SAR signal components, linear Fourier terms and higher-order phase terms are analytically derived and discussed in detail. Moreover, it is proven that SAR image reconstruction is a motion-compensation procedure, i.e., it removes all phases induced by first- and higher-order motion. Based on the SAR signal analysis, an illustrative iterative image-reconstruction algorithm is derived. The quality of the imaging is evaluated by an entropy cost function. Simulation experiments are carried out to verify the correctness of the theoretical statements in respect of SAR signal formation and image reconstruction.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3