Stator Fault Detection in Induction Motors by Autoregressive Modeling

Author:

Garcia-Guevara Francisco M.1,Villalobos-Piña Francisco J.1,Alvarez-Salas Ricardo2,Cabal-Yepez Eduardo3,Gonzalez-Garcia Mario A.2

Affiliation:

1. Departamento de Ingeniería Electronica, Instituto Tecnologico de Aguascalientes, Avenida Adolfo Lopez Mateos No. 1801 Oriente, Aguascalientes, AGS, Mexico

2. CIEP, Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava No. 8, San Luis Potosí, SLP, Mexico

3. Departamento de Estudios Multidisciplinarios, Division de Ingenierías Campus Irapuato-Salamanca (DICIS), Universidad de Guanajuato, 38944 Yuriria, GTO, Mexico

Abstract

This study introduces a novel methodology for early detection of stator short circuit faults in induction motors by using autoregressive (AR) model. The proposed algorithm is based on instantaneous space phasor (ISP) module of stator currents, which are mapped toα-βstator-fixed reference frame; then, the module is obtained, and the coefficients of the AR model for such module are estimated and evaluated by order selection criterion, which is used as fault signature. For comparative purposes, a spectral analysis of the ISP module by Discrete Fourier Transform (DFT) is performed; a comparison of both methodologies is obtained. To demonstrate the suitability of the proposed methodology for detecting and quantifying incipient short circuit stator faults, an induction motor was altered to induce different-degree fault scenarios during experimentation.

Funder

Instituto Tecnologico de Aguascalientes

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital Twin and Deep Learning-Based Approach for Detecting Faults in Induction Motors;Lecture Notes in Networks and Systems;2024

2. Induction motor bearing faults diagnosis based on Auto-Regressive spectral analysis;2023 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) & 2023 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM);2023-09-01

3. Shannon Entropy Index and a Fuzzy Logic System for the Assessment of Stator Winding Short-Circuit Faults in Induction Motors;Electronics;2019-01-15

4. Current Characteristics Analysis and Fault Injection of an Early Weak Fault in Broken Rotor Bar of Traction Motor;Mathematical Problems in Engineering;2018-10-10

5. Condition Monitoring and Fault Diagnosis of Induction Motors: A Review;Archives of Computational Methods in Engineering;2018-09-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3