Digital Twin and Deep Learning-Based Approach for Detecting Faults in Induction Motors
Author:
Publisher
Springer Nature Switzerland
Link
https://link.springer.com/content/pdf/10.1007/978-3-031-70018-7_44
Reference16 articles.
1. Garcia-Guevara, F.M., Villalobos-Piña, F.J., Alvarez-Salas, R., Cabal-Yepez, E., Gonzalez-Garcia, M.A.: Stator fault detection in induction motors by autoregressive modeling. Mathem. Problems Eng. 2016 (2016).
2. Saari, J., Strömbergsson, D., Lundberg, J., Thomson, A.: Detection and identification of windmill bearing faults using a one-class support vector machine (SVM). Measurement 137, 287–301 (2019)
3. Drakaki, M., Karnavas, Y.L., Tziafettas, I.A., Linardos, V., Tzionas, P.: Machine learning and deep learning based methods toward industry 4.0 predictive maintenance in induction motors: State of the art survey. J. Indust. Eng. Manag. (JIEM) 15(1), 31–57 (2022)
4. Mukhopadhyay, R., Panigrahy, P. S., Misra, G., Chattopadhyay, P.: Quasi 1D CNN-based fault diagnosis of induction motor drives. In: 2018 5th International Conference on Electric Power and Energy Conversion Systems (EPECS), pp. 1–5. IEEE (April 2018)
5. Khan, T., Alekhya, P., Seshadrinath, J.: Incipient inter-turn fault diagnosis in induction motors using CNN and LSTM based Methods. In: 2018 IEEE Industry Applications Society Annual Meeting (IAS), pp. 1–6. IEEE (September2018 )
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3