Non-Gaussianity from Particle Production during Inflation

Author:

Barnaby Neil1

Affiliation:

1. McLennan Physical Laboratories, Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON, Canada M5S 3H8

Abstract

In a variety of models the motion of the inflaton may trigger the production of some non-inflaton particles during inflation, for example via parametric resonance or a phase transition. Such models have attracted interest recently for a variety of reasons, including the possibility of slowing the motion of the inflaton on a steep potential. In this review we show that interactions between the produced particles and the inflaton condensate can lead to a qualitatively new mechanism for generating cosmological fluctuations from inflation. We illustrate this effect using a simple prototype modelg2(ϕϕ0)2χ2for the interaction between the inflaton,ϕ, and iso-inflaton,χ. Such interactions are quite natural in a variety of inflation models from supersymmetry and string theory. Using both lattice field theory and analytical calculations, we study the production ofχparticles and their subsequent rescatterings off the condensateϕ(t), which generates bremsstrahlung radiation of light inflaton fluctuationsδϕ. This mechanism leads to observable features in the primordial power spectrum. We derive observational constraints on such features and discuss their implications for popular models of inflation. Inflationary particle production also leads to a very novel kind of nongaussian signature which may be observable in future missions.

Publisher

Hindawi Limited

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3