One-loop infrared rescattering by enhanced scalar fluctuations during inflation

Author:

Fumagalli JacopoORCID,Bhattacharya Sukannya,Peloso Marco,Renaux-Petel Sébastien,Witkowski Lukas T.

Abstract

Abstract We show that, whenever the perturbations of some field are excited during inflation by a physical process on sub-horizon scales, they unavoidably generate, even through gravitational interactions alone, a significant resonant IR cascade of power down to scales that are of the order of the horizon at that time (we denote these scales as near IR). We provide general analytic one-loop results for the enhancement of the IR power of the curvature perturbation generated by this effect, highlighting the role played by the resonance. We then study a number of examples in which the excited state is: (i) an isocurvature field, (ii) the curvature perturbation itself, (iii) a mixture of curvature and isocurvature fluctuations driven to an excited state by their coupled dynamics. In the cases shown, the cascade significantly modifies the near IR part of the power spectrum of the curvature perturbation with respect to the linear theory, indicating that this effect can impact the phenomenology associated with a variety of mechanisms considered in the literature, notably concerning primordial black holes and gravitational waves.

Publisher

IOP Publishing

Reference88 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3