No time to derive: unraveling total time derivatives in in-in perturbation theory

Author:

Braglia MatteoORCID,Pinol Lucas

Abstract

Abstract The in-in formalism provides a way to systematically organize the calculation of primordial correlation functions. Although its theoretical foundations are now firmly settled, the treatment of total time derivative interactions, incorrectly trivialized as “boundary terms”, has been the subject of intense discussions and conceptual mistakes. In this work, we demystify the use of total time derivatives — as well as terms proportional to the linear equations of motion — and show that they can lead to artificially large contributions cancelling at different orders of the in-in operator formalism. We discuss the treatment of total time derivative interactions in the Lagrangian path integral formulation of the in-in perturbation theory, and we showcase the importance of interaction terms proportional to linear equations of motion. We then provide a new route to the calculation of primordial correlation functions, which avoids the generation of total time derivatives, by working directly at the level of the full Hamiltonian in terms of phase-space variables. Instead of integrating by parts, we perform canonical transformations to simplify interactions. We explain how to retrieve correlation functions of the initial phase-space variables from the knowledge of the ones after canonical transformations. As an important first application, we find the explicit sizes of Hamiltonian cubic interactions in single-field inflation with canonical kinetic terms and for any background evolution, straight in terms of the primordial curvature perturbation and its canonical conjugate momentum, as well as the corresponding ones in the tensor sector, and the ones mixing scalars and tensors. We also briefly comment on quartic interactions. Our results are important for performing complete calculations of exchange diagrams in inflation, such as the (scalar and tensor) exchange trispectrum and the one-loop power spectrum. Being already written in a form amenable to characterize quantum properties of primordial fluctuations, they also promise to shed light on the non-linear dynamics of quantum states during inflation.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In-in formalism for the entropy of quantum fields in curved spacetimes;Journal of Cosmology and Astroparticle Physics;2024-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3